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Since det T~ #0, XJ,#O. From these relations, we have

det (T8 – ~~t) det (f2-’T~) = det (~~fFITo – ~~fl-’Tt)

= det (WI – ~~fl-iT8)

= ‘et ‘Q-’xk’det(tl - “)=00

“f’he final result is

“’(T’-; 1)=0
(53)

From (53), it follows that there is always an eigenvalue

~/hk of To, corresponding to an eigenvalue ~k to 2?0,

(Theorem 1).

We shall use the same subscript for the corresponding

solutions of the eigenvalue problems of the two circuits:

Ah=;. (54)

Multiplying (21) by Q-1T04 t from the right and usi~lg

(19) and (20), we obtain

1-

()
Al–z Ak&lA~ == O. (55)

If At # l/ik, (55) shows that ~&F’lA ~==O. In the llon-

degenerate case, X1# l/~k for k #l. Thus, we obtain the

desired orthogonality relation (Theorem 2):

/i&lA1 = 0, k?+!?. (56)

In the degenerate case, k # 1 does not necessarily y mean

that AI # l/kk. However, we are justified in assuming

(56), for it is always possible to introduce the degenerate

eigenvectors in such a way as to secure the ortho-

gonality.

Next, we expand ~~k+ by the eigenvectors A 1, where

the symbol ~ indicates the complex conjugate transpose:

~~],~ = ~ alAz.

Multiplying by ~&?-l from the left and using (.56), we

have

~k~~+ = ffk& L?-lA~.

Since ~k # 0, the left hand side of the above equation is

not zero. Thus we conclude that (Theorem 3):

&ti-lAk # O. (57)
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Action of a Progressive Disturbance on a Guided

Electromagnetic Wave*
J. C. SIMO~~

1. INTRODUCTION

A.

A

PROBLEM often encountered in wave physics

concerns the interaction of various types of

waves, and the energy transfer from one wave

to another.

In the particular case of waves of the same nature,

‘(modes)’ can be distinguished in such a way that a wave

can be represented as a sum of these modes. Their essen-

tial character is that the energy associated with each

* Original manuscript received by the PGMTT, May, 1959;
revised manuscript received, September 25, 1959.

~ Department de Physique Applique, C. S. F., Orsay, S.0.,
France.

does not vary with time. It is also said that these modes

are not “coupled.” This, for instance, is the case of

waves guided in an electric waveguide, of mechanical

vibration in a bar, and of energy levels in quantum

physics.

Although this possibility of decomposition in “normal

modes” corresponds to particular physical conditions,

it has made it possible to deduce general notions of a

fundamental character essential to the physicist. In the

most general case, the normal modes are said to be

coupled that is the energy passes from one to the other,

so much that this decomposition into normal modes

appears to be indispensable in deducing physical con-

cepts.
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Such problems are treated by using a method of ap-

proximation known as the “theory of perturbations. ”

Much could no doubt be said about the validity of the

application of this method and the convergence of solu-

tions. Nevertheless, it is frequently employed in many

fields of physics, in particular, in quantum physics such

as solid-state physics or atomic physics. It has enabled

physicists to obtain results which have been confirmed

by experiment. We shall therefore apply it to the par-

ticular problem of the action of a progressive disturb-

ance on an electromagnetic wave.

B.

One of the principal applications of the study of the

action of a progressive disturbance will, as we shall see,

concern parametric amplification.

What are the essentials of parametric amplification?

They consist of a signal to be amplified, of frequency

oJ/27r, ‘(pumping” energy at frequency oJJ2n-, and a medi-

um whose characteristics vary in function with the ap-

plied pumping energy. Usually, “pumping” energy and

signal energy are of the same kind, electromagnetic for

instance. It is always implied that it is the ‘(pumping”

energy alone which acts on the medium, to the exclusion

of the signal or of the resulting beats.

Therefore, it appears legitimate to say that it is the

medium modified by the pumping which acts on the signal.

Pumping can therefore be ignored in formulating the

problem which in any case becomes much clearer

physically.

A modification of the medium may be produced by

something other than an electromagnetic wave—by a

mechanical wave, for instance, as in the case of heat

photons and X-rays.

Thus, the following scheme may be adopted. Because

of its energy, the pumping modifies the medium (e or K

variable as a function of the pumping field). Knowing

the modification of the medium, an action on the signal

can be deduced. This point of view is, of course, legitimate

only because the Maxwell equations are linear for the sig-

nal, w,kich is assumed not to act on the medium (for small

signals approximation, see Section V, B).

Modification of a medium can be obtained in various

ways. In the case ok electromagnetic pumping energy,

it is naturally necessary that the characteristics e or y

vary with the level of the field. The medium is said to be

nonlinear. This is obtained in general only for rather

high pumping energy, or, in any case, energy much

greater than that of the incident signal.

Action on a nonlinear medium of an electromagnetic

field in order to modify appreciably the characteristics

of the medium is a difficult problem. It Imust be dealt

with if the problems of parametric amplification are to

be fully solved.

However, in the case of a progressive pumping wave,

it appears physically plausible that the modification of

the medium is akin to a sinusoidal disturbance ac-

companying the pumping wave, at least as a first ap-

proximation. For this reason the disturbance of the

medium will be described by the relations (1) or (1’), It

should be noted that such a disturbance can arise only

if the medium “follows” the electromagnetic field at the

frequency of the pumping wave. This condition limits

parametric amplification at the higher frequencies.

SECTION II

A. Establishing the General Propagation Equation

Consider a three dimensional medium, such that
p=po=c~e, @=&:

The components of ~ are the direction cosines of

direction k~(O, O, k,).

The N!faxwell equatioms are written:

V.z=o (3) V*D = o. (5)

Eliminating ~ and ~ =No~ from (2) and (4), we have
—

VX v x E = –pod:=V(v. z) –V2E. (6)

Assume E.= O. As e does not vary following directions

x and y, (5) becomes V. ~ = O; under these conditions

(6) takes the form

(7)

It should be noted that formulas corresponding to a

variable permeability are written in similar fashion if

similar hypotheses can be made on p. Let

~ = ~. = constant and ~ = po + Al cos ((~lt — jj~). (l’)

Taking H.= O we have

(7’)

B. Introduction of Boundary Conditions

The conditions in cases where one of the two parame-

ters e or p is variable are satisfied by TEM modes guided

in the direction OZ. This, in particular, is the case if the

guiding structure consists of two -plane walls of zero
impedance, and of two perpendicular walls of infinite

impedance. A portion of a plane wave can be propagated

in such a guided structure. In the case of the usual

waveguide with zero impedance walls, it is the variable e

case, magnetic mode, which satisfies simply the bound-

ary conditions. Let us deal with this case, from which

the preceding case is easily deduced.
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Take a metallic waveguide with sides a and b. The

magnetic modes satisfy Ez = O and V.~ = O (see Fig. 1).

Let HOI be the fundamental mode

with P = exp –j(d – kz).

Eqs. (8) and (9) are valid when the waveguide is

filled with a homogeneous material. In order to ~make it

valid in the case where e satisfies (1), we write:

Ex = EO sin ~ P- ~ a,, exp – jn(wf – k~z). (8’)
—m

Eqs. (2) and (4) are satisfied if (6) is satisfied.

Since (5) is satisfied because of the choice of ~, (6)

takes the form of (7). If (7) is satisfied, B is deduced

from ~ by group (9), which is deduced from (2). It is

easy to verify that the boundary conditions

satisfied.

The term under the exponential is written:

(OJ+ uu,)t – (k + nkJz.

If w is of the order of w, rigorously speaking,

are also

it would

be necessary to introduce modes of higher order, HOP,

since the latter could be propagated.

Let us restrict ourselves to the case of a sum of modes

1101. Transfer (8’) into (7), which is written:

and transform the cosine into an exponential sum, ordi-

nating in ~z.The resulting equation will be satisfied if the

coefficients of the variable terms are all zero.

o $

Fig. 1

For this we must have

[

(k+ }zkJ ‘ + ~

60 —
1

an
,UO(6J+ f’z’LOl)2

+ ~ (ad + an+J = O. (IO)

Verification: make EL= O. We have only one coefficient

a.#0, i.e., ao, if

IT’
W2COJ40— — — kz = O,

b2
(11)

but

( 27r
a2eOIJ0 = koz ko = ~ ; k. = wavelength in vacuum

)

and (11) becomes

k02–kz=~. (11’)

C. The Perturbation Method

The solution of (7) has become the solution of a sys-

tem of an infinity of homogeneous equations with an in-

finite number of unknowns. Such a process is often em-

ployed in mathematical physics. It is the one used, for

instance, in solid-state physics,l or in quantum physics

when a solution is sought for the perturbed Schrodinger
equation.’ Historically, astronomers Mathieu and Hill

were the first to use such a mathematical technique. 3

The system whose general equation is given by (10)

has a solution only if the determinant is zero. We then

have to find the values of u and k which make an in-

finite determinant zero. The general problem is very

complex, so we shall only introduce approximations

which will give the result simply.

Examination of (10) shows that the an coefficient

bracket is large compared to cl/2 coefficient of the term

a.–l +an+l. It is desirable to obtain an expression for an

in which cl may be considered as being infinitely small.

This is the “perturbation method. ”
For instance, let us try to solve the system step by

step, taking two an, ao and al. We establish that an tends

to infinity. It is possible that an tends to zero for n in-

finite positive or infinite negative, but not for both. This,

of course, is due to the fact that the system determinant

is not zero.

Assume am infinitely small compared to ao in ell’1 and

ignore infinitely small terms of an order greater than 2.

1 See section 40 of [2].
z See section 2 of [1].
3 See Cha~ter 19 of 1.31
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We shall then say that we are using the perturbation

method of order 2. From the physics point of view, this

means ignoring beats of order greater than + 1 and — 1.

Only three equatioris of the type of (10) are involved;

those corresponding to n = – 1, 0, and +1. That is to

say

[72 = – l]a_l + $ aO = O (12)

[74 = O]ao + + (a-l + a+J = O (13)

[n=+ l]al+~aO=O. (14)

Making these three equations compatible, we have

[?J=OI-:[[n=1+~]+[n =1-1]
1

= o. (15)

Eq. (15) connects ~ and k as a function of parameters

uI, kl and q/eO,

In order to simplify the discussion without changing

the physical conclusions, let us restrict ourselves to the

case of the ideal TEM mode, already mentioned—that

of a waveguide which has two walls of zero impedance

and two of infinite impedance. All that is needed is to

write in (10) l/ZJ = O. Eq. (15) is written, remembering

that W = GJ_Wz,

obviously positive values of Z, and for I XI N 1 It

should be noted that (16), Z =~(X), does not change if

X and Xl change to –X and –Xl. This only means

changing the sense of the axis Oz, thus changing nothing

in the physical conditions. From this, it is possible to

restrict the study of the approximation Z =,~(X) near

the point X=+l, 2=0.

Eq. ~x = O is satisfied for six values of X:

* 1; –X,*(1+$2); + x, f, (1 – Q).

In general, around X = 1 there is a real solution,

and one only, to 20 =~(X). This soluticln is real and

little different from unity; the value of k is real and

little different from ko. This is no longer the case if one

of the preceding roots is close to unity. Complex solu-

tions of 20 =~(X) in X can appear. This will naturally

happen only in the presence of double or triple rc~ots.

Let us examine the various possible cases:

1)1= –XI+l+Q Xl = Q triple root (see 3)

2)1=–X,–1–Q Xl = – 2 – Q double root

3)1=X1+1–Q XI = Q triple root (see 1)

4)1= X,–l+Q Xl = 2 – O double roc)t.

It is easy to prove that the solutions corresponding to

point ( – 1, O) are deduced from the latter b:y changing

Xl to – Xl; that is, by a simple change of the orienta-

tion of the axis Oz (see Fig. 2).

We shall therefore examine the case of triple roots

1) and 3), and the cases of double roots 2!) and 4).

r 1 1 7

Let exponential solutions

‘\
\

\

\

\
\

\
I\z

+

l–

D. The Various Solutions (:::~~”(16) *“’””’””””””””
-2 0 r 2—

x,+
Because of the approximations of the perturbation 4

theory, (16) may give correct results only for small and Fig. 2
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E. Remarks B. Case X1=–2– Q

The relation 1) or 3) can be written It is the bracket corresponding to n=+ 1 which be-

comes zero if X tends towards unity. We shall assume

kl k. kl+ko ko–kl that a+l is of the order of ao and that a–l is negligible.
—._. .— .

Eqs. (13) and (14) alone are to be considered and are
w OJ @l+@ 6J-OJ1

written:

The field formula (8’) shows that it is written, in gen-

eral, in the form of the sum of three waves corresponding [tz=O]ao+~al=O (13’)
ton=–1, 72=0, n=+l.

If q is very small compared to cO, k is very little dif-

ferent from ko, to within the perturbation term of k, the [n=+ l]al+~aO=O. (14’)

three waves in question have phases respectively equal

to

(o – w)t – (ko – kJz; at – k,z; (u + co,)t – (ko +

Relation 1) therefore means that these three waves

equal phase velocities.

Similarly, the relations 2) and 4) are written:

kl + kO ko
— . . .
6Jl+@ (JJ

kl – ko ko
— .—. .
OJ1-O u

kJz.

have

In order that they shall be compatible, we must have

[?L=l][Z=O]–+=O.

Using the notation previously adopted,

we have

(4a)

In these cases, waves n=O and n= +1 or n= – 1 have

phase velocities which have equal X absolute value but of

opposite signs. Physicists sa~ that this concerns the

Bragg phenomenon, and, in the cases considered pre-

viously, the Bragg interference of the first order.

Thus, the general formula for the Bragg phenomenon

corresponds to the formula

n is the order of the interference. Physically, this means

that the wave with the phase factor (u +MJJt

– (ko +nk,)z and the wave cot– koz which correspond

respectively to the terms n and O in the development of

(8’), have phase velocities which have equal X absolute

value. From the calculation point of view, the conse-

quence of the above relation is that among (12), (13)

and (14), equations corresponding to ranks n and O have

equal coefficients. The system is degenerate.

SECTION 111

A. Double Root Cases

In this case, one of the brackets of (12) or (14) is

cancelled. It is no longer possible to say that the cor-

responding value of a+l or a_l is small compared to the

value of ao. If, for instance, it is the bracket correspond-

ing to n = + 1 which becomes zero when X is equal to

unity, a+l is of the order of ao, but then a–l is of the

order of cl, and is therefore negligible compared to a.

and al. Eqs. (12), (13) and (14) are reduced to (13) and

(14) in which a_l has been made zero. In quantum

physics this solution is termed degenerate. We have seen

that it corresponds to the Bragg interference case.

‘=(’-X2WX31

(15’)

Replacing Xl by its value and neglecting infinitely small

terms of order 2 and beyond, we have with a = f 1;
j~=–l,

Let us calculate the corresponding values of the field.

Inserting the value of X in either (13’) or (14’), CI dis-

appears. This justifies the hypothesis that ao and al are

of the same order, and we have

al
—. + (q’

/
1+:.

aO w
(18)

Finally, the value of the electric field can be written in

the form:

‘==““’-”’”%/=%[’”“(”’-’0”)
———

+aj d 11 +Xexp –j[(~ +ox)f – (k, + k~)z] . (19)
m

It can be easily verified that the result is not funda-

mentally changed by a change of phase on the wave of

phase oJt– koz and therefore equally on (alt —klz). Terms

in u and u +W1 are still in quadrature and are given by

(18), the ratio k/kO being given by (17). Let us write
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E, = ‘a exp – afl.zko [cos (wt – koz) + cd sin [(0+ col)t – (ko + kl)z]]. (20)

Hy = 3 exp – a~zkO[cos (cd – kOz) + aZJsin [(w + w)i – (kO + kl)z]]. (21)

Eq. (21) is obtained by inserting (20) in the second part

of (9), taking into account the relation (2a), which can

be written

k, + ko kO
_—— ?

Wl+ti w

and neglecting the term in eJcO. The general expression

for ths field is written in the form of the sum of two

terms corresponding to the values a = + 1 and a = – 1,

each having a coefficient which, as we shall see, depends

on the boundary conditions. For instance:

E. = al~+l(z) exp – pkoz + azd-l(z) exp pkoz, (20’)

~(z), equal to the bracket in (20), in which a has been

made equal to + 1 or to — 1, is a periodic function of Zo.

We find a general expression in accordance with

Floquet’s theorem [3].

Let us now try to adapt these solutions to a non-

perturbed medium. First, it should be noted that (20)

and (21) show that the solution comprises two waves

circulating in opposite directions, one of frequency u in

the positive sense, the other of frequency u +col in the

negative sense.

Let e = EOeverywhere except in the segment 0.4 = Zo,

where it satisfies (1). The incident wave is the wave P.,

such that E.= a cos(ut — koz). In segment O.-I only two

groups of waves can exist. Each one of these groups con-

sists of two waves, circulating in opposite directions, of

frequencies u/27r and u +uJ27r. One decreases, and the

other increases exponentially with z. They must come

into accord in planes O and A. Because of the direction

of propagation, it is possible to add only a wave P~+~l

of frequency u +wl/27r for z <0 and a wave Pm’r of fre-

quency cJ/27r for z> zO. In order to satisfy the boundary

conditions the wave l’~+til must become zero for z = ZO.
Neglecting terms in el/eO, the boundary conditions are

easily satisfied in the general case and make it possible

to adopt the scheme of Fig. 3. One case of particular

interest occurs when z is sufficiently large so that pkozo is

large. In this case P.” is negligible, and it is only neces-

o P,
4 z

*

Fig. 3

—.

sary to consider the group of waves with a negative ex-

ponential in order to satisfy the boundary conditions.

By equating the electric and magnetic fields at the right

and left of plane z = O, we have a = al. And if P,, and

P.+ul represent the powers of the incident and reflected

waves, we have

Pm l’. + w,
—. (22)

(JJ OJ+ul

The reflected wave is of frequency w +W1/27r andl (22)

shows that the ratio of the reflected to the incident

waves is in the ratio of the frequencies.

The physical interpretation is simple. Let til = 0, and

we have k] = 2ko. The medium is modulated sinusoidally

at the spatial period of AO/2. It is well known that in this

case the incident wave is reflected if the disturbance is

large enough, and that in the disturbed medium the

field is represented by two equal waves propagated in

opposite directions and damped exponentially. Physi-

cists designate this a case of Bragg inter fe~ence of thefirst

order, while for filter specialists it is a case of a stopped

band.

When CO1differs from zero, things happen as if the

medium moved toward negative values of z (in Fig. 3

wave PJ. The reflected wave is now at the upper fre-

quency w +wJ27r. The incident wave appears to be re-

flected by a moving mirror. This is a Doppler efe(t.

Finally, (22) is familiar to quantum physicists. It

shows that to an incident photon of power (h/2m)co

there corresponds a reflected photon of power

h/2r(u + ~J. The number of photons is preserved.

C. Balance oj Power

The reflected power is greater than the incident

power. Energy has been transferred, obviously from the

wave P1 of the medium. Let us examine the balance of

power in a slice dz with an abscissa less than zO.

We can write:

V.(EXZT) =R. VXE-17. VX 77,

from which, using (2) and (4) :

—

V.@ XH) =-+-77.:. (23)

Rigorously speaking, in order to establish (23) it would

be necessary to consider the electric current density J4.

4 See section 2.19 of [4].
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Term ~. ~ would then appear in the first member

of (23), But, in the case under consideration ~ is zero

in the dielectric medium, and on the conducting walls

the product i?. ~ is obviously zero. Integrating over the

volume V , we have

Let 1-1 represent the first member of (24), and TZ the

second member. T2 is written

Eq. (25) differs from the usual formula with ~ constant

because of the second integral. If the fields expressed by

(20) and (21) are inserted in (25), and if the average

value of r2 is calculated over a sufficiently long interval

of time, we have

a!

?2 = + — ba~clEo2dz,
4

which arises exclusively from the second integral of (25).

Further,

~1 = sE02 ~ exp — 2apzk0

. [c~s’ (utp~ kz) – a’b’ sin’ [(OJ+ ox)t – (k+ h)z] ].

Taking the average value of rl we have

71 == dzEo2.2a~ko-& : [b’ – 1], (26)

but

6=
d

1+:; k’ = tay.LW02;
w

#=sx
/’

1+:,
4eo cd

and naturally, ?l = ?’. This verification shows that the

fields actually satisfy the equations and also that T,

given by

1
T==—

s

E’?dv,

2 v at
(27)

represents the work done by the medium, rl being

equal to the flux of the Poynting vector, or to the energy

carried away by the electromagnetic wave. Eq. (26)

shows that this energy is proportional to el/eo, al and to

the &zcident energy,

We have implicitly assumed that the medium was

capable of supplying energy without becoming modified.

Naturally this is only an approximation, all the closer

to reality as the quantity of energy is small. This is the

case of weak incident energy—a case oj ‘(aflproximation

for small signals.”

D. Case X1=2– Q

The calculations are similar to those for the previous

case. But now it is the bracket corresponding to n = — 1

which becomes zero if X tends towards unity. Eqs. (12)

and (13) alone are to be considered, a+l being negligible.

The equation which gives k in terms of the other

parameters is written

Replacing Xl by its value, we have for a= f 1:

k
—_

d
—=l+a~ :–1
k.

if 01 > OJ. (30)
u

The solutions corresponding to CO1<co. or UI > co. are now

of a different kind; one is exponential, the other purely

sinusoidal. The ratio a–1/aO is written:

a–l

— = ~J.d1–: ifwl<u
ao

(31)
w

a_l ‘i@—=0! —— 1 if w > W.
a.

(32)
w

E. U1<U

The electric and magnetic fields, for

d

WI
1 ——. b; ‘1

d
1–2=P,

w z @

where

are written

En=aexp– apzko [cOS (d — koz) + ab sin [(w – wl)t – (k. – kl)z]],

IIy = ~ exp – apzko [COS(cd – koz) – ab sin [(a – ul)t– (k. – kl)z] ],
pow

(33)

(34)
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These expressions are very close to (20) and (21). Con-

tinuing with the reasoning in the previous paragraph,

it is easily seen that the solution described by (33) and

(34) consists of two waves P. and P.-., of frequency

u/21r and w —col/27r circulating in opposite directions,

In the case of Fig. 4, if zo is sufficiently large, only wave

PU_W, at frequency a —wJ27r, is reflected and the rela-

tion of the conservation of the number of photons is

again satisfied:

P. P. -.,
—

w 0—(01

The perturbation wave PI of the medium moves in the

positive direction. We are again dealing with Doppler

reflection on a medium moving away instead of ap-

proaching, as in the previous case. The frequency as

well as the energy decrease. Energy is imparted to the

medium.

I’. Wl>u

The conditions of Fig. 4 are still valid. In the per-

turbed medium two groups of two waves of pulsation w

and OJI—w can be propagated. A value of a corresponds

to each one of these groups. For instance, the electric

field is written

Ex = [al exp jk~pz + az exp – jk~kz] exp – j(tit – koz)

+ b [al exp + jkwz – az exp – jkwz]

“exp + j[(w – OJ)t + (ko – kl)z], (35)

where

Writing that the boundary conditions are satisfied, in

0 and A we have

al+a2=a, (36)

al exp jkopzo — a2 exp — jkokzo = 0. (37)

Hence,

al = +- [1 — jtgkoK~O]

Two cases are of special interest:

)20/.420 = + Kn-

al =

Eq. (35) becomes

Es = a cos koyz cos (cot

— ab sin kopz sin

a
a2=—

2

– koz)

[(WI — W)i + (ko — k,)z]. (38)

For z = Oor z = zO,the first term of (38) alone remains, the

incident wave is transmitted unchanged, and no wave

of pulsation W1—a issues.

kopzo = : + K7To

————

System (36), (37) is degenerate, and there is no solrr-

tion for it unless a = O. In this case with a,= a~ ==a’/2,

(35) is written

Ez = a’ sin kopz sin (wL - koz)

+ a’b cos kopz cos [(w – w)t -1- (ko – k~)z]. (39)

It is possible to reconcile this solution in O and A by

the method shown in Fig. 5: a wave P.” toward the

right and a wave P.l-a toward the left. It should be

noted that the relation

pull pm,_u
—— (40)

w W1—w

is verified, as is readily seen in (39).

Of course, it is still necessary to find out kow such a

solution can be established in the perturbed medium

(note that a’ is arbitrary. However, it can be asserted

that the system oscillates spontaneously on both pulsa-

tions w and W1– w.

One special case is that in which CJI==2CJ,kl = 0. This

calls to mind the classical problem of a self-excited oscil-
later.5

P
W,-w

.

c

Fig. 4

P’
W,-w

P;
5

Fig. 5

6 Seeparagraph 51 of [21.

I z
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Thus, in the case for which the relations

IZ’k’w:-’=:+”ff
are satisfied, the element OA behaves as an oscillator at

frequencies u and UI – O. For given values of OJ1and kl,

this condition can arise fortuitously, since the domain

allowed to the electromagnetic wave (u+O) is generally

considerable. These conditions are very similar to the

condition of oscillation of the ‘(carcinotron” tube.

SECTION IV

A, Triple Root Case: Relation 1) or 3)

The following is a case of triple degeneration.

The three brackets of (12), (13) and (14) become zero,

and coefficients ao, al and a–l are of the same order, We

must therefore consider (12), (13), and (14). In actual

fact we shall examine not only the case where kl/cq

= ko/cJ but also neighboring cases, which will give an

idea of the stability of the solution.

Let X = 1 +0; Xl= Q+OI. The parameter

(41)

O1=;–%
(.0

is a measurement of the difference between the phase

velocity of the unperturbed wave and that of the pertur-

bation.

Eqs. (12), (13) and (14), which are in fact the funda-

mental equations of the problem, are written with these

new variables, assuming that 0 and 61 are small com-

pared to unity:

01+9 Jr
—--ao=O

T+_i a’ – 2

0.O -d; (al+ .+I) = O

0,–0 @-
—a–l—— ao = O.
Q–1 2

(42)

(43)

(44)

Eqs. (15) or (16), obtained by ~liminating a–l, a.

and a+l from these three equations, is written, with these

new variables:

02 – 012
z=2e (45)

o–m”

B. Case O=wl/cJ<l

Fig. 6 represents the function Z =f(8) for case

01> zero. Case & <0 is deduced from the former by

Fig. 6

changing 61 to —01 and 6’ to —0 (symmetry with respect

to the Z axis).

For Z small and positive, there are three real roots
o’, 6“ and 8’” for Z = f (0). 6’ is close to and less than –01;

0“ is close to zero and positive; 6’” is close to and greater

than fll. If 01 tends toward zero, the solid curve blends

with the parabola Z = 202 shown as a dashed line in

Fig. 6, and the Z axis.

If 01 is small, the solutions 131# O are of a kind differing

little from the solutions 61= O—a group of slow waves, a

group of fast waves, and a group with velocities very

close to that of the unperturbed wave.

Let us therefore examine the case 191=O. The two

groups of fast and slow waves have for the value of k:

k cl
—=l+a — with a = t 1. (46)
ko 24?,0

The corresponding values of a are:

a_l --2 (1 –cl)
a. = 42

a+l

Z=%(l+Q)’

(47)

(48)

For the group of waves of the same velocity as the

unperturbed wave k = ko, we have for the solution of the

system (42), (43), and (44): ao = O, and al +al = O. The

latter solution is of little interest since it does not agree

with an incident wave of phase wt — k’z.

Therefore the two groups of waves described by the

solutions (46), (47) and (48) must be used. All these

waves are propagating in the same direction. Since their

phase velocities are slightly different, they beat with

one another. Actually, this produces a sinusoidal modu-

lation of the amplitude at the various pulsations w – COI;

w; w +w1. The phase of this modulation is k’pz with

p = eJ2 J%.
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Writing accord at O, we have for the field expression: z

~\)

f

j
)1

E, = cos kN.LZexp – j(cot – hz) + — sin kopz
d?

/’

“K )

p -----.. ---–-[- - II
I

1 – x exp –j[(cu – uJt – (k – kl)z] I ,1
co , /

1 /

() 1

1 ,,

+ 1 +3 exp–j[(ti+@- (k+k~)z] . (49)
1/
1/

O /t
/;

The energy passes alternately from the vibration at fre- /’ f

@—@l
/’

quency ~ to the vibrations at frequencies
/

—————and /8
222

I
A/~~ 1

@+oJl \, { - .,~e, n e,

2’IZ “
- e,~ o , ;

2
1
1
,

C. Case Q = UJU >1.
I
,
[

In Fig. 7 the solid curve shows the variation of
1
,

Z =~(6) for /3,> O. The curve 61<0 is deduced from the
1
1
1

latter by symmetry with respect to the Z axis. 1
t

If Cl< Z< ~, or if Z> ~’, there are three real roots for
I
:

0. But if (> Z > r’, two of the real roots are transformed t

into complex roots.

Developing in the neighborhood of point A, we have: Fig. 7

X=l+*[l+ajz.t], (50) the phase velocity of the exponential waves is always

less than the phase velocity of the unperturbed wave,

with whether the perturbation phase velocity is lower or
22

()

4012 higher than the latter.
a=+l; U2=— ——1 ;

3Z
{=

3(V% – 1) If Z is much greater than r, the value of k is no longer

given by the approximation of (50) but is complex if
(JI

Q=—; O1=:–?; z=<; C>z>{’:

6J a 4q? x = 1 +V[l +cqk]; (54)

or

(50’)

The value of k is complex only if Z> ~, i.e., assuming u and v must be calculated directly. But it can be stated

that 1 is small compared to @il that

(51)

Eq. (51) gives a threshold for the appearance of exponen- The relations expressed in (53) are still valid, and the
tial solutions, tied to the depth of perturbation. This exponential waves are always slower than the unper-
threshold is lower as U1 becomes greater than co. It turbed wave.

shou[d be noted, however, that the solution is valid only A group of sinusoidal waves correspc,nding to the real
if uJul#ko/coo. root of Z =~(0) must be associated with the two groups

The phase velocity V is the same if a = + 1 or a = – 1; of exponential waves. The latter becomes
;k is given by:

7

x#l–e, –&(l+ n). (55)

Note that if Verification is made of the fact that, since 0,<<1, all the

{

waves considered have positive phase velocities. The
01>0 VI < Vo Zh<v<vo

(53) solution will therefore be obtained by bringing the

01<0 VI > ’00 V<uo<vl, fields into agreement in the plane z= 01. We have
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r bl+?)!2+b3=a

+C+l)=o
(56)

1 281

–b’>=o”

bl, bj are the arbitrary coefficients affecting the groups

of exponential waves a = +1, a = — 1, and b8 is the arbi-

trary coefficient of the group of sinusoidal waves. a is

the coefficient of the incident wave. The group of equa-

tions in (56) is obtained by equating the field values for

pulsations a, o – al, ~+ W. The system in (56) of three

equations with three unknowns has, in general, only one

solution.

In the case 81>0 it is the group of waves correspond-

ing to a <O with coefficient bz, which increases exponen-

tially; in the case 01<0 it is the group of waves corre-

sponding to a >0 with coefficient bl. At first sight, there

is no essential difference between the two types of solu-

tions, except for an amplitude ratio which is different

in the components at the various frequencies.

SECTION V

A. Physical Applications

The foregoing paragraphs have established a certain

number of results which can find application, in par-

ticular, in the so-called domain of “parametric ampli-

fication. ”

Before passing to this domain, it is useful to recall a

few features and conditions of the results obtained.

a) The application of the method of first order per-

turbations assumes, basically, that the neglected quanti-

ties do not influence the exact solution. In the cases dealt

with, this assumes that eJeo is small, and that the com-

ponents with pulsations w +ncol with n> 1 are negligi-

ble. In general, this approximation seems to be reason-

able physically, This means that the spectrum decreases
rapidly around pulsation cu.

This may not be the case for a Bragg interference of

order greater than unity, described by the relation

In fact, in an actual physical problem, it is necessary to

take into consideration harmonics of high order.

b) It has been implicitly assumed that extraction of

energy did not modify the perturbation. This can be

true only for weak signals, or when it is possible to feed

the medium at all points with energy of correct phase

and amplitude. Otherwise, it would be necessary to con-

sider the fact that the electromagnetic wave at u would

have some effect on the medium itself by weakening or

strengthening the perturbation. (This is similar to the

action of the perturbation on the electromagnetic wave

by increasing or decreasing it.)

c) The cases examined have this in common—they

all relate to Bragg interference of the first order. There

is a clear feeling that it is in the case of Bragg interfer-

ence that the interaction of the medium on the wave is

strong, for it is then that the phase conditions which

make the action cumulative are best obtained. A par-

ticularly striking example is that of cases 2) and 4)

(Section III) for small values of coJu.

This has led to the exploration in plane kl/ko, CJ1/Wof

two straight lines [cases 2) and 4)] and of a region

around the first bisector [cases 1) and 3) and sur-

roundings].

In order to exhaust the problem it would, in fact, be

necessary to explore the whole plane. But then the

question would be raised of the validity of the solutions

obtained, which, it should be remembered, are only

approximations,

B. Parametric A mplijication

As was stated in Section I it is possible to ap-

proach the problems of parametric amplification by

separating the difficulties. A pumping energy modifies

the characteristics of the medium. Knowing the modifi-

cation of the medium, an action on the signal is deduced.

It is then unnecessary to introduce the pumping field

in the equations. This is obvious in the case of an energy

of a different character—mechanical for instance.

Consider the case of an electromagnetic pumping

energy: that is, the same kind as the signal.

Let El, Hl, E, H represent the pumping field of fre-

quency UI/27r and signal field of frequency u/27r. By

hypothesis, the Maxwell equations (2), (3), (4) and (5)

and the boundary conditions are satisfied for the

pumping field El, HI alone. In particular, (4) is written

(57)

In (57) e is a function of x, y, z and of the field El, H1.

In particular it can take the form described by (1).

It is now necessary to satisfy the Maxwell equations

and the boundary conditions for the sum of the pumping

and signal fields. But the Maxwell equations, as well as

the boundary conditions, are linear. Since the pumping

field already satisfies them, it is necessary and sufficient

that the signal field satisfy them, provided that e is for-

mulated so that it can be determined by (57). This as-

sumes that the addition of the signal field does not modi-

fy the value of e. This condition, generally realized, can

be described as an “approximation for small signals. ”
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This being said, up to the moment and as far as we

know, parametric amplification experiments have been

performed only with lumped constants or with cavities.

In the case of lumped constants, the circuits have

always been tuned, which, as in the cavities case, is the

same as repeating in time the action of the medium on

the electromagnetic wave. More precisely, it is possible

to pass easily from the case of a traveling wave to that

of a cavity. Thus, as is well-known, in a cavity the field

can generally be given the form of two traveling waves

circulating in opposite directions so that the matching

conditions may be obtained at the extremities. A trans-

position of the solutions found for traveling waves can

therefore be made for cavity problems,

c.

Various analogies can be drawn from known cases of

localized parametric amplification.

Up-converter: An input signal of frequency co and

“pumping” power of frequency ox produce a signal of

frequency co+coI. The latter is amplified in power in the

ratio 1 +uJQ. This is what was found in Section II 1,

B; in particular, see (22).

Down-converter: An input signal of frequency w and

“pumping” power of frequency col produce a signal of

frequency OJ–u, (see Section III, D).

If (JL > w, the resultant signal is diminished. Power

loss is given by 1 –ul/u (see Section III, E).

If (oI > co, it is possible to obtain some amplification

(see Section III, F). However, there is a tendency to

instability; under certain conditions the system can

break into oscillations, as in (41). As was already seen,

this case approaches the conventional self-excited oscil-

lator.

D.

The solution examined in Section IV should be com-

parecl to the operation of traveling wave tubes, espe-

cially in the case where W1> w. (See the preceding para-

graph.)

Thus, drawing an analogy between dielectric and

electric current, we find that, as in the TWT case, it is
in the neighborhood of equality of phase velocity of the

cold -wave and of the velocity of the electrons, and that

it is possible to obtain exponential amplification. The

amplified wave, sometimes designated ‘(forced)’ wave, in

TWT tubes always has a phase velocity which is less

than the phase velocity of the “cold” wave [see (53)].

E.

It has been found (Section II 1, F) that under certain

conditions described by (41) the perturbed medium may

behave like an oscillator delivering energy at frequencies

a and CJ1—w. It is interesting to point out that there is a

strong analogy between the conditions in (41) and

those which give the oscillating state for the UHF tube

called ‘icarcinotron” or backward wave oscillator.

VI. CONCLUSION

This investigation has made it possible to obtain the

modes of action of a perturbation of the medium[ on a

guided electromagnetic wave. This action is intense,

especially when the so-called Bragg phase velocity con-

ditions are obtained. It is then possible to have energy

transfer into the electromagnetic wave.

In such a problem, the ‘(boundary conditions” are as

important as the solution of the propagation equation,

In particular, the “accord conditions” between a per-

turbed and an unperturbed medium have set aside a

certain number of solutions which could have been taken

as actual amplifications. Such a state of affairs k found

in certain plasma waves which cannot be ‘(extracted”

from the medium.

In the “approximation of small signals,” it has been

seen that the problem discussed is related to the prob-

lem of parametric amplification. Analogies have been

found with cases of localized parametric amplification

and with the conditions of traveling wave tubes and

carcinotrons.

We do not claim to have completely dealt with para-

metric amplification for traveling waves, but it seems

that this way of treating the problem may bring out the

greatest number of related physical concepts. It appears

that the complete solution of practical cases should be

undertaken in accordance with the proposed scheme

which makes it possible to separate the difficu\ties—

action of the ‘(pumping energy” on the medium, and

action of the perturbed medium on the signal.
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