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Since det T30, Ax#0. From these relations, we have
det (To - 7\k[) det (271T%) = det (Teﬂ“lTa — i\kﬂ_lTe)
= det (le - ku—lT{a)

1
= det (Q‘li\ﬁ det (i— I — T6> =0,
k

The final result is

1
det (Te —— I> = 0.
A

From (53), it follows that there is always an eigenvalue
1/ of T, corresponding to an eigenvalue A; to Ty,
(Theorem 1),
We shall use the same subscript for the corresponding
solutions of the eigenvalue problems of the two circuits:
1

>\k::'..—"'
k

(53)

(54)

Multiplying (21) by Q'7%4; from the right and using
(19) and (20), we obtain

1\ .
()\z - —5\—) A4, =0, (55)

k
If A=£1/As, (55) shows that A, 014,=0. In the non-
degenerate case, \;5# 1/}, for k54]. Thus, we obtain the
desired orthogonality relation (Theorem 2):

January

A014, =0, k=1 (56)

In the degenerate case, k7! does not necessarily mean
that N;»1/\;. However, we are justified in assuming
(56), for it is always possible to introduce the degenerate
eigenvectors in such a way as to secure the ortho-
gonality.

Next, we expand Q4+ by the eigenvectors 4 ;, where
the symbol +indicates the complex conjugate transpose:

Q/Lc—" = Z O(zAz.

Multiplying by 4,2 from the lelt and using (56), we
have

fikfik"' = ak/IkQ_lAk.

Since 4,70, the left hand side of the above equation is
not zero. Thus we conclude that (Theorem 3):

Ay t4; # 0. (57

ACKNOWLEDGMENT

The authors wish to thank M. Uenohara and R. S.
Engelbrecht of Bell Telephone Labs., Inc., for valuable
suggestions and J. D. Tebo, publication supervisor of
the Whippany Laboratory for sending a reprint of the
summary of R. S. Engelbrecht’s paper. The continued
support and encouragement of Prof. M. Hoshiai, Prof.
N. Takagi and Prof. S. Saito have been greatly ap-
preciated.

Action of a Progressive Disturbance on a Guided

Electromagnetic Wave*
j. C. SIMON?

1. INTRODUCTION
4.
)& PROBLEM often encountered in wave physics

concerns the interaction of various types of
waves, and the energy transfer from one wave
to another.

In the particular case of waves of the same nature,
“modes” can be distinguished in such a way that a wave
can be represented as a sum of these modes. Their essen-
tial character is that the energy associated with each

* Original manuscript received by the PGMTT, May, 1959;
revised manuscript received, September 25, 1959,
F 1 Départment de Physique Applique, C.S.F., Orsay, S.0.,
rance,

does not vary with time. It is also said that these modes
are not “coupled.” This, for instance, is the case of
waves guided in an electric waveguide, of mechanical
vibration in a bar, and of energy levels in quantum
physics.

Although this possibility of decomposition in “normal
modes” corresponds to particular physical conditions,
it has made it possible to deduce general notions of a
fundamental character essential to the physicist. In the
most general case, the normal modes are said to be
coupled that is the energy passes from one to the other,
so much that this decomposition into normal modes
appears to be indispensable in deducing physical con-
cepts.
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Such problems are treated by using a method of ap-
proximation known as the “theory of perturbations.”
Much could no doubt be said about the validity of the
application of this method and the convergence of solu-
tions. Nevertheless, it is frequently employed in many
fields of physics, in particular, in quantum physics such
as solid-state physics or atomic physics. It has enabled
physicists to obtain results which have been confirmed
by experiment. We shall therefore apply it to the par-
ticular problem of the action of a progressive disturb-
ance on an electromagnetic wave.

B.

One of the principal applications of the study of the
action of a progressive disturbance will, as we shall see,
concern parametric amplification.

What are the essentials of parametric amplification?
They consist of a signal to be amplified, of frequency
w/2w, “pumping” energy at frequency w;/ 2w, and a medi-
um whose characteristics vary in function with the ap-
plied pumping energy. Usually, “pumping” energy and
signal energy are of the same kind, electromagnetic for
instance. It is always implied that it is the “pumping”
energy alone which acts on the medium, to the exclusion
of the signal or of the resulting beats.

Therefore, it appears legitimate to say that it is the
medinm modified by the pumping which acts on the signal.
Pumping can therefore be ignored in formulating the
problem which in any case becomes much clearer
physically.

A modification of the medium may be produced by
something other than an electromagnetic wave—by a
mechanical wave, for instance, as in the case of heat
photons and X-rays.

Thus, the following scheme may be adopted. Because
of its energy, the pumping modifies the medium (e or u
variable as a function of the pumping field). Knowing
the modification of the medium, an action on the signal
can be deduced. This point of view s, of course, legitimate
only because the Maxwell equations are linear for the sig-
nal, which is assumed not to act on the medium (for small
signals approximation, see Section V, B).

Modification of a medium can be obtained in various
ways. In the case ot electromagnetic pumping energy,
it is naturally necessary that the characteristics € or u
vary with the level of the field. The medium is said to be
nonlinear. This is obtained in general only for rather
high pumping energy, or, in any case, energy much
greater than that of the incident signal.

Action on a nonlinear medium of an electromagnetic
field in order to modify appreciably the characteristics
of the medium is a difficult problem. It must be dealt
with if the problems of parametric amplification are to
be fully solved.

However, in the case of a progressive pumping wave,
it appears physically plausible that the modification of
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the medium is akin to a sinusoidal disturbance ac-
companying the pumping wave, at least as a first ap-
proximation. For this reason the disturbance of the
medium will be described by the relations (1) or (17). It
should be noted that such a disturbance can arise only
if the medium “follows” the electromagnetic field at the
frequency of the pumping wave. This condition limits
parametric amplification at the higher frequencies.

SectioN 11
A. Establishing the General Propagation FEquation
Consider a three dimensional medium, such that
p=po=c, e=c':

€ =

€ -+ € cos (wﬂ — 751'77). (1)

The components of # are the direction cosines of
direction k1(0, 0, k1)
The Maxwell equations are written:

X E o8 (2 X H oD 4
v Y v oo
V-B=0 (3) v-D=0. (5)

Eliminating # and B=puoH from (2) and (4), we have
.

—_ 92D —- —

Assume E,=0. As ¢ does not vary following directions
x and ¥, (5) becomes V-E=0; under these conditions
(6) takes the form

8°D
oL

VEE = Mo (7)
It should be noted that formulas corresponding to a
variable permeability are written in similar fashion if
similar hypotheses can be made on u. Let

€ = ¢ = constant and p = uo + w1 cos (wt — &7). (1°)
Taking H,=0 we have
VH = o8 )
= gy —— -
"o

B. Introduction of Boundary Conditions

The conditions in cases where one of the two parame-
ters e or u is variable are satisfied by TEM modes guided
in the direction O.. This, in particular, is the case if the
guiding structure consists of two plane walls of zero
impedance, and of two perpendicular walls of infinite
impedance. A portion of a plane wave can be propagated
in such a guided structure. In the case of the usual
waveguide with zero impedance walls, it is the variable e
case, magnetic mode, which satisfies simply the bound-
ary conditions. Let us deal with this case, from which
the preceding case is easily deduced.
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Take a metallic waveguide with sides ¢ and b. The
magnetic modes satisfy E,=0 and V-E=0 (see Fig. 1).
Let Hy be the fundamental mode

. Ty
Ex=EoSIH?P Hx=0
o0 . oH, OE, (9)
v T T e
oH, dE,
Ez =0 Mo = -
L L d dy

with P=exp—j(wi—kz).

Egs. (8) and (9) are valid when the waveguide is
filled with a homogeneous material. In order to make it
valid in the case where e satisfies (1), we write:

) .
E, = E, sm?P- > a, exp — jn(wd — kg). (8)

—

Eqgs. (2) and (4) are satisfied if (6) is satisfied.

Since (5) is satisfied because of the choice of E, (6)
takes the form of (7). If (7) is satisfied, # is deduced
from E by group (9), which is deduced from (2). It is
easy to verify that the boundary conditions are also
satisfied.

The term under the exponential is written:

(w + not — (k 4+ nki)s.

If w; is of the order of w, rigorously speaking, it would
be necessary to introduce modes of higher order, Ho,,
since the latter could be propagated.

Let us restrict ourselves to the case of a sum of modes
Hy,. Transfer (8') into (7), which is written:

3E,
dy?

92E, ot? (
(')32 = Mogﬁ l[EO + €1 COS (w1l -_ klz)]Ex}, (7)

and transform the cosine into an exponential sum, ordi-
nating in #. The resulting equation will be satisfied if the
coefficients of the variable terms are all zero.

Fig. 1
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For this we must have

2

(k -+ nk)? + %;

wolw + nwp)?
€1
+ —2‘ (dn—l -+ a'n+1) = 0. (10)

Verification: make ¢, =0. We have only one coefficient
an#0, 1.6., ap, if

2
2 L=
w€omo Iz k 0,

(11)
but

27
wequy = ko? <k0 = )\—;)\0 = wavelength in Vacuum>
0

and (11) becomes

(11)

C. The Perturbation Method

The solution of (7) has become the solution of a sys-
tem of an infinity of homogeneous equations with an in-
finite number of unknowns. Such a process is often em-
ployed in mathematical physics. It is the one used, for
instance, in solid-state physics,! or in quantum physics
when a solution is sought for the perturbed Schrédinger
equation.? Historically, astronomers Mathieu and Hill
were the first to use such a mathematical technique.?

The system whose general equation is given by (10)
has a solution only if the determinant is zero. We then
have to find the values of w and % which make an in-
finite determinant zero. The general problem is very
complex, so we shall only introduce approximations
which will give the result simply.

Examination of (10) shows that the @, coefficient
bracket is large compared to €/2 coefficient of the term
Gn—1+any1. 1t is desirable to obtain an expression for a,
in which e; may be considered as being infinitely small.
This is the “perturbation method.”

For instance, let us try to solve the system step by
step, taking two a., ¢o and a;. We establish that ¢, tends
to infinity. It is possible that a, tends to zero for # in-
finite positive or infinite negative, but not for both. This,
of course, is due to the fact that the system determinant
1s not zero.

Assume ¢, infinitely small compared to @ in ¢! and
ignore infinitely small terms of an order greater than 2.

1 See section 40 of [2].
2 See section 2 of [1].
? See Chapter 19 of 131,
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We shall then say that we are using the perturbation
method of order 2. From the physics point of view, this
means ignoring beats of order greater than -1 and —1.

Only three equations of the type of (10) are involved;
those corresponding to n= —1, 0, and +1. That is to
say

[ = — 1]ay + % @ =0 (12)
[n=ﬂ%+~%w4+@ﬁ=0 (13)
= + 1]a1+525 g = 0. (14)

Making these three equations compatible, we have

a’ 1 1
e e e U

Eq. (15) connects w and % as a function of parameters
w1, k1 and € /e,

In order to simplify the discussion without changing
the physical conclusions, let us restrict ourselves to the
case of the ideal TEM mode, already mentioned—that
of a waveguide which has two walls of zero impedance
and two of infinite impedance. All that is needed is to
write in (10) 1/b=0. Eq. (15) is written, remembering
that k02 = €0M0w2,

b =

1
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obviously positive values of Z, and for \X1 ~1. It
should be noted that (16), Z=/(X), does not change if
X and X; change to —X and —X;. This only means
changing the sense of the axis Oz, thus changing nothing
in the physical conditions. From this, it is possible to
restrict the study of the approximation Z=f(X) near
the point X =41, Z=0.
Eq. f» =0 is satisfied for six values of X:

+1; - X;+ (14 9); + X+ (1 —-9.

In general, around X =1 there is a real solution,
and one only, to Zy=f(X). This solution is real and
little different from unity; the value of % is real and
little different from ko. This is no longer the case if one
of the preceding roots is close to unity. Complex solu-
tions of Z,=f(X) in X can appear. This will naturally
happen only in the presence of double or triple roots.
Let us examine the various possible cases:

Dili==-X1+1+0Q Xy = Q triple root (see 3)
N1l=—-—X;—1-—9 X, = — 2 — Q double root
H1=Xy+1—-09 X = Q triple root (see 1)
H1=X—14+¢ X, = 2 — Q double root.

It is easy to prove that the solutions corresponding to
point (—1, 0) are deduced from the latter by changing
X1 to —X;i; that is, by a simple change of the orienta-
tion of the axis Oz (see Fig. 2).

We shall therefore examine the case of triple roots
1) and 3), and the cases of double roots 2) and 4).

1

k2 > 612
k02 4602

Let

—k—=X; E=X1; i:Z; 31:9.

ky ko €02 )
We have
1 1 1
7 1-x X + X0\

_(1+9>
N 1

REI

Because of the approximations of the perturbation
theory, (16) may give correct results only for small and

D. The Various Solutions

(k + k)?

w1 2
ko (1 + ~>
(&)

(k — ko)?
ky? <1 - 33>2
w

exporential solutions

= (.

i Sinuspidal solutions

X

8

>
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E. Remarks

The relation 1) or 3) can be written

k1

w1 [63)

b btk kh—h
w1+

The field formula (8’) shows that it is written, in gen-
eral, in the form of the sum of three waves corresponding
ton=—1, =0, n=+41.

If ¢ is very small compared to €, k is very little dif-
ferent from ky, to within the perturbation term of %, the
three waves in question have phases respectively equal
to

(w —_ wl)t - (ko —_ k1)2, wl — koZ; (Cz) + wl)l — (ko + kl)Z

w — Wy

Relation 1) therefore means that these three waves have
equal phase velocities.
Similarly, the relations 2) and 4) are written:

kitke ke

w + w N ) (2e)

ki— ko ko

W — T @ . (4a)
In these cases, waves n=0and = +1orz= —1 have

phase velocities which have equal Xabsolute value but of
opposite signs. Physicists say that this concerns the
Bragg phenomenon, and, in the cases considered pre-
viously, the Bragg interference of the first order.

Thus, the general formula for the Bragg phenomenon
corresponds to the formula

<k0 + 7Zk1>2 <k0>2

@ + wy w ’

n is the order of the interference. Physically, this means
that the wave with the phase factor (w-+nw)t
— (ko+nk)z and the wave wti—koz which correspond
respectively to the terms # and 0 in the development of
(8), have phase velocities which have equal Xabsolute
value. From the calculation point of view, the conse-
quence of the above relation is that among (12), (13)

and (14), equations corresponding to ranks # and 0 have
equal coefficients. The system is degenerate.

SEcTION 111
A. Double Root Cases

In this case, one of the brackets of (12) or (14) is
cancelled. It is no longer possible to say that the cor-
responding value of @41 or a_; is small compared to the
value of a,. If, for instance, it is the bracket correspond-
ing to #=-1 which becomes zero when X is equal to
unity, @4, is of the order of @y, but then a_; is of the
order of €, and is therefore negligible compared to aq
and a;. Egs. (12), (13) and (14) are reduced to (13) and
(14) in which a_, has been made zero. In quantum
physics this solution is termed degenerate. We have seen
that it corresponds to the Bragg interference case.

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
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B. Case X1=—-2-0Q

It is the bracket corresponding to #»= 41 which be-
comes zero if X tends towards unity. We shall assume
that a4, is of the order of @o and that a_; is negligible.
Egs. (13) and (14) alone are to be considered and are
written:

[n = 0]ao + le—al =0 (13)

[n =4+ 1]a + —Z—ao = 0. (14"

In order that they shall be compatible, we must have

[n=1][n=0]——4—=0. (15
Using the notation previously adopted,
k k1 612 w1
ko ko 4ey? w
we have

X 4+ Xi\?
w5

Replacing X, by its value and neglecting infinitely small
terms of order 2 and beyond, we have with a= +1;

j=-1,
S tte g /14
ko a]460 w

Let us calculate the corresponding values of the field.
Inserting the value of X in either (13’) or (14'), & dis-
appears. This justifies the hypothesis that ¢ and @, are
of the same order, and we have

a1 . w1
— = +a14/1+—‘
o w

Finally, the value of the electric field can be written in
the form:

(17)

(18)

€1 w1
4/1 —l—k[exp — jlwt — koz)
4deg 3}

+ aj/‘/l -+ %exp — jl[(w + w)t — (k1 + ko)z]:,. (19)

E. = aexp — aky

It can be easily verified that the result is not funda-
mentally changed by a change of phase on the wave of
phase wt — koz and therefore equally on (wit— ki2). Terms
in w and w+w; are still in quadrature and are given by
(18), the ratio k/ko being given by (17). Let us write

w1 €1 w1
1/1+—=b; ——V1+—=u-
w 4eo @
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We have:
E. =0 exp — auzko[cos (wt — kez) + ab sin [(o + o)t — (ko + k)z]]. (20)
ak
Hy = = exp — auzke[cos (w! — koz) + ab sin [(w + w)i — (ko + E)s]]. (21)
pow

Eq. (21) is obtained by inserting (20} in the second part
of (9), taking into account the relation (2a), which can
be written

ki + ko ko

w1+ w w’
and neglecting the term in é;/€,. The general expression
for the field is written in the form of the sum of two
terms corresponding to the values = +1 and a=—1,
each having a coefficient which, as we shall see, depends
on the boundary conditions. For instance:

E, = ai941(3) exp — pkoz + aed_1(5) exp pkoz. (207)

¢(2), equal to the bracket in (20), in which « has been
made equal to +1 or to —1, is a periodic function of z.
We find a general expression in accordance with
Floquet’s theorem [3].

Let us now try to adapt these solutions to a non-
perturbed medium. First, it should be noted that (20)
and (21) show that the solution comprises two waves
circulating in opposite directions, one of frequency w in
the positive sense, the other of frequency w+w; in the
negative sense.

Let e=¢o everywhere except in the segment O.d =z,
where it satisfies (1). The incident wave is the wave P,
such that E,=a cos(wt—koz). In segment 0.1 only two
groups of waves can exist. Each one of these groups con-
sists of two waves, circulating in opposite directions, of
frequencies w/27 and w+w;/2w. One decreases, and the
other increases exponentially with z. They must come
into accord in planes O and .4. Because of the direction
of propagation, it is possible to add only a wave P,yu1
of frequency w-w;/2m for 2<0 and a wave P, of fre-
quency /2w for 2> 2. In order to satisly the boundary
conditions the wave P,,,1 must become zero for z=g,.

Neglecting terms in /€, the boundary conditions are
easily satisfied in the general case and make it possible
to adopt the scheme of Fig. 3. One case of particular
interest occurs when 2 is sufficiently large so that ukez, is
large. In this case P, is negligible, and it is only neces-

'q,u-l-w/ 'Doé-l-w,
—e
P R, P
[4 A z
)
Fig. 3

sary to consider the group of waves with a negative ex-
ponential in order to satisfy the boundary conditions.
By equating the electric and magnetic fields at the right
and left of plane =0, we have a=a,. And if P, and
Py represent the powers of the incident and reflected
waves, we have

Pm+w1
= 22
o (22)

Plﬂ

(6]
The reflected wave is of frequency w-+w;/27 and (22)
shows that the ratio of the reflected to the incident
waves is in the ratio of the frequencies.

The physical interpretation is simple. Let w; =0, and
we have k1 =2ko. The medium is modulated sinusoidally
at the spatial period of No/2. It is well known that in this
case the incident wave is reflected if the disturbance is
large enough, and that in the disturbed medium the
field is represented by two equal waves propagated in
opposite directions and damped exponentially. Physi-
cists designate this a case of Bragg interference of the first
order, while for filter specialists it is a case of @ siopped
band.

When w; differs {from zero, things happen as if the
medium moved toward negative values of g (in Fig. 3
wave Pi). The reflected wave is now at the upper fre-
quency w-+w;/2w. The incident wave appears to be re-
flected by a moving mirror. This is a Doppler effect.

Finally, (22) is familiar to quantum physicists. It
shows that to an incident photon of power (4/2m)w
there corresponds a reflected photon of power
h/2m(w-+e1). The number of photons is preserved.

C. Balance of Power

The reflected power is greater than the incident
power. Energy has been transferred, obviously from the
wave P; of the medium. Let us examine the balance of
power in a slice dz with an abscissa less than z.

We can write:

V(EXH =HVXE-EVXH,
from which, using (2) and (4):
oD  _

— 9B
V-(EXH)=—E-——H~—6—[-

py (23)

Rigorously speaking, in order to establish (23) it would
be necessary to consider the electric current density J*.

4 See section 2.19 of [4].
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Term E-J would then appear in the first member
of (23). But, in the case under consideration J is zero
in the dielectric medium, and on the conducting walls
the product E-7 is obviously zero. I ntegrating over the
volume ¥V, we have

- oD _ 8B
f(E X ), dS = —f(E—+H———~>dV. (24)
8 v ot Jdt
Let 71 represent the first member of (24), and 7, the
second member. 74 is written

d
— Ty = — -

1 de
E? H¥)dV —f E*—4dv. (25
2 ), o (eE? + uH®AV + W iy (25)

Eq. (25) differs from the usual formula with e constant
because of the second integral. If the fields expressed by
(20) and (21) are inserted in (25), and if the average
value of 73 is calculated over a sufficiently long interval
of time, we have

To = + % bW1€1E02dZ,

which arises exclusively from the second integral of (25).
Further,

k
= f Ey? — exp — 2auzko
s Mot

-[cos? (wt — Bz) — a2b? sin® [(w + wi)t — (& + kyz]].

Taking the average value of 7; we have

January

equal to the flux of the Poynting vector, or to the energy
carried away by the electromagnetic wave. Eq. (26)
shows that this energy is proportional to €1/ €0, w1 and to
the incident energy.

We have implicitly assumed that the medium was
capable of supplying energy without becoming modified.
Naturally this is only an approximation, all the closer
to reality as the quantity of energy is small. This is the
case of weak incident energy—a case of “approximation
Sfor small signals.”

D. Case X1=2-Q

The calculations are similar to those for the previous
case. But now it is the bracket corresponding to 7= —1
which becomes zero if X tends towards unity. Egs. (12)
and (13) alone are to be considered, a, being negligible.
The equation which gives % in terms of the other
parameters is written

U )

(28)
Replacing X; by its value, we have for a= +1:

€1 Wi
— =14 o — 1 —— o <w (29)
ko €0 @
k € w .
—=14+a—y/ —-1 if wr > w.  (30)
kO €g w

The solutions corresponding to w; <w, or w; > w, are now
of a different kind; one is exponential, the other purely
sinusoidal. The ratio a_;/a, is written:

E o1
o= 2. — e —1 2 a_ w
F1 = diBe’-Zapko How 2 o b (26) = aj /‘/1 -2 fw <ow (31)
Qo w
but a1 w .
o — = af/— =1 if w1 > w. (32)
b=/‘/1 +*; k2=eo,u0w2; o @
w
o @ E oi<w
b= ey X4/ 1+ o The electric and magnetic fields, for
. . . . w1 €1 Wy
and naturally, 71=7, This verification shows that the ,‘/ l——=0b —p/1——=y
fields actually satisfy the equations and also that 7, w 4eo w
given by where
1 a —
T=——fE2———€—dV, 27) bk ko
2Jy ot W — w 1
represents the work done by the medium, 7; being are written
E, = a exp — auzhky [cos (wf — kez) + ab sin [(w — )t — (B — A)z]], (33)
ako .
Hy = — exp — apzky [cos (wf — koz) — absin [(0 — w)t — (B — B1)z]]. (34)

Mow
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These expressions are very close to (20) and (21). Con-
tinuing with the reasoning in the previous paragraph,
it is easily seen that the solution described by (33) and
(34) consists of two waves P, and P,_,, of frequency
w/27 and w—w;/27 circulating in opposite directions,

In the case of Fig. 4, if 2, is sufficiently large,only wave
P,y at frequency w—w;/2m, is reflected and the rela-
tion of the conservation of the number of photons is
again satisfied:

Pw Pw—wl

@ W — Wi

The perturbation wave P; of the medium moves in the
positive direction. We are again dealing with Doppler
reflection on a medium moving away instead of ap-
proaching, as in the previous case. The frequency as
well as the energy decrease. Energy is imparted to the
medium.

F. o>w

The conditions of Fig. 4 are still valid. In the per-
turbed medium two groups of two waves of pulsation w
and w; —w can be propagated. A value of « corresponds
to each one of these groups. For instance, the electric
field is written
E. = [0y exp jhouz + az exp — jkous| exp — j(wt — koz)

+ blas exp + jhous — a2 exp — jhouz]
cexp + jl(or — W)t + (ko — k2], (35)

where
— . ——
b=4/—a-)—1-—1 and ,u=———1- ﬂ-—ln
12 4¢ w

Writing that the boundary conditions are satisfied, in
O and 4 we have

@+ e = e, (36)
a, exp jko#Zo - Qg €Xp — ]‘ko[J,Zo = (. (37)
Hence,
a
ay = '—2"' [1 — jtgkouZO]
a 3
as = 7 [1 +]tgko#20].

Two cases are of special interest:

kouzo = + km
a
G = Qg = —
2

Eq. (35) becomes
E,; = a cos kouz cos (w! — koz)
— ab sin kouz sin [(w1 — w)t + (ko — k)z]. (38)
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For z=0o0r 2=2, the first term of (38) alone remains, the
incident wave is transmitted unchanged, and no wave
of pulsation w;—w issues.

T
kouzy = ? + k.

System (36), (37) is degenerate, and there is no solu-
tion for it unless a=0. In this case with a1=ay=a’/2,
(35) is written

E, = ¢ sin kouz sin (0! — kz)

~+ a'b cos kopz cos [(w1 — w)t + (ke — kz]. (39)

It is possible to reconcile this solution in O and 4 by
the method shown in Fig. 5: a wave P,” toward the
right and a wave P, toward the left. It should be
noted that the relation

17
Pw Pwl—-w

w W — W

(40)

is verified, as is readily seen in (39).

Of course, it is still necessary to find out kow such a
solution can be established in the perturbed medium
(note that @’ is arbitrary. However, it can be asserted
that the system oscillates spontaneously on both pulsa-
tions w and w; —w.

One special case is that in which w,==2w, k1 =0. This
calls to mind the classical problem of a self-excited oscil-
lator.®

Fao A

-,

A, A P

”
2

Fig. 5

§ See paragraph 51 of [2].
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Thus, in the case for which the relations

fw1>w
k w
R S (41)
ko o
k €1 w1 1 ™ +
zokg — A/ — — 1 =-— 4«
"1V e y T

are satisfied, the element OA behaves as an oscillator at
frequencies w and w; —w. For given values of wy and ki,
this condition can arise fortuitously, since the domain
allowed to the electromagnetic wave {wiko) is generally
considerable. These conditions are very similar to the
condition of oscillation of the “carcinotron” tube.

SecTIiOoN IV
A. Triple Root Case: Relation 1) or 3)

The following is a case of triple degeneration.

k k
X1=Q; —1——_——0-

w1 wo

The three brackets of (12), (13) and (14) become zero,
and: coefficients ag, @; and a_; are of the same order, We
must therefore consider (12), (13), and (14). In actual
fact we shall examine not only the case where ki/w;
=}ko/w but also neighboring cases, which will give an
idea of the stability of the solution.

Let X=1+0; X:=Q+40,. The parameter

k1 wy

W —_———

=ko w

is a measurement of the difference between the phase
velocity of the unperturbed wave and that of the pertur-
bation.

Eqgs. (12), (13) and (14), which are in fact the funda-
mental equations of the problem, are written with these
new variables, assuming that 8 and 6, are small com-
pared to unity:

6+ 0 NZ
— g — =0 42
o1l ai ;T w (42)
7

Bao ~\/Z (d__1 4+ a+1) = ( (43)
6, — 0 Z
- a1 — v ay = 0. (44)
Q-1

Eqgs: (15) or (16), obtained by éliminating a_1, @
and a4 from these three equations, is written, with these
new variables:

62 — 0,2

f——n - 45
Y (45)
B. Case Q=w/w<1

Fig. 6 represents the function Z=f(f) for case
61 >zero. Case 6:<0 is deduced from the former by

Janvary

z

Fig. 6

changing 6, to —6, and 8 to —8 (symmetry with respect
to the Z axis).

For Z small and positive, there are three real roots
8,8 and 0" for Z =f(0). ¢ is close to and less than —0;
9" is close to zero and positive; §’’ is close to and greater
than 6. If 6, tends toward zero, the solid curve blends
with the parabola Z=26? shown as a dashed line in
Fig. 6, and the Z axis.

1f 6, is small, the solutions 8,50 are of a kind differing
little from the solutions 6, =0-—a group of slow waves, a
group of fast waves, and a group with velocities very
close to that of the unperturbed wave.

Let us therefore examine the case #;=0. The two
groups of fast and slow waves have for the value of k:

k
St a— witha = + 1. (46)
ko 24/ 2¢g
The corresponding values of ¢ are:
a_1 o
o VZ( ) (47)
1A% ] [
ao,VZ( ) (48)

For the group of waves of the same velocity as the
unperturbed wave &=k, we have for the solution of the
system (42), (43), and (44): a¢=0, and a14a2=0. The
latter solution is of little interest since it does not agree
with an incident wave of phase wf— koz.

Therefore the two groups of waves described by the
solutions (46), (47) and (48) must be used. All these
waves are propagating in the same direction. Since their
phase velocities are slightly different, they beat with
one another. Actually, this produces a sinusoidal modu-
lation of the amplitude at the various pulsations w —wy;
w; w+wi. The phase of this modulation is kouz with
H= 61/2 \/260.
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Writing accord at O, we have for the field expression:

: J
E, = cos kouz exp — j{wt — koz) + 7

sin kousz

[(1 - ﬂ) exp = j[(0 — w)t — (k — k1)z]

+ <1 4 %) exp — j[(w + w)t — (& + koz]} (49)

The energy passes alternately from the vibration at fre-
wW— W1

and

quency %2 to the vibrations at frequencies
wtow

2w
C. Case Q=wi/w>1.

In Fig. 7 the solid curve shows the variation of
Z =f(8) for 8:>0. The curve 6; <0 is deduced from the
latter by symmetry with respect to the Z axis.

If 0<Z<¢, or if Z> (', there are three real roots for
0. But if {>7Z>{, two of the real roots are transformed
into complex roots.

Developing in the neighborhood of point A, we have:

X142 11 + aju] (50)
V3 ¥
with
2/7 46,2
empn e 2(E0): pe W
3\ 3(v32 — 1)
533 k1 wy 612
=—; b=———; =—;
I3 ko ) 4 ep?

The value of & is complex only if Z>(, 4.e., assuming
that 1 is small compared to /3.

e? @ (k1 w1>2
—>3————1.
€g° w1 \ ko 12}
Eq. (51) gives a threshold for the appearance of exponen-
tial solutions, tied to the depth of perturbation. This
threshold is lower as w; becomes greater than w. It
should be noted, however, that the solution is valid only
if wl/wl#ko/wo.
The phase velocity Vis the same if a=-+1or a=—1;
it is given by:

(1)

1 4 1 -+ 1 wm (1 1) (52)
V Vo '\/3 w n Vo )
Note that if
{01 >0 91 < Vo 1 <V <y 53)
0, <0 v > U V<7)0<'U1,
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the phase velocity of the exponential waves is always
less than the phase velocity of the unperturbed wave,
whether the perturbation phase velocity is lower or
higher than the latter.

If Z is much greater than {, the value of % is no longer
given by the approximation of (50) but is complex if
(>z2>0:

X =1+ o[l + aju]; (54)

or

kH1+1<k1 w1>|:1+ 1/2_(2 11/2
b V3\k o “3;)]'

(507)

# and v must be calculated directly. But it can be stated
that

s 36, 2

—_— < <
V3 2

The relations expressed in (53) are still valid, and the
exponential waves are always slower than the unper-
turbed wave.

A group of sinusoidal waves corresponding to the real
root of Z=f(f) must be associated with the two groups
of exponential waves. The latter becomes

Z
X#l—(h—El—(l—I-Q). (55)

Verification is made of the fact that, since §,<<1, all the
waves considered have positive phase velocities. The
solution will therefore be obtained by bringing the
fields into agreement in the plane 2=0. We have
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[~ h+bt+b=2a
; V3Z -1 V3Z -1
Y28 V3—1—ju 20, 3 —1+ju
NZ
+ b Q-1 =0
* 26, ( ) (56)
; V3Z  a+1 V3Z a+1
U006, V3414w 200 V3+1—ju
20
b =
B VZ
b1, by are the arbitrary coefficients affecting the groups
of exponential waves a= 41, = —1, and b; is the arbi-

trary coefficient of the group of sinusoidal waves. ¢ is
the coefficient of the incident wave. The group of equa-
tions in (56) is obtained by equating the field values for
pulsations w, w— w1, w+wi. The system in (56) of three
equations with three unknowns has, in general, only one
solution.

In the case #:>0 it is the group of waves correspond-
ing to a <0 with coefficient bs, which increases exponen-
tially; in the case §, <0 it is the group of waves corre-
sponding to o> 0 with coefficient b;. At first sight, there
is no essential difference between the two types of solu-
tions, except for an amplitude ratio which is different
in the components at the various frequencies.

SectioN V
A. Physical Applications

The foregoing paragraphs have established a certain
number of results which can find application, in par-
ticular, in the so-called domain of “parametric ampli-
fication.”

Before passing to this domain, it is useful to recall a
few features and conditions of the results obtained.

a) The application of the method of first order per-
turbations assumes, basically, that the neglected quanti-
ties do not influence the exact solution. In the cases dealt
with, this assumes that €/€ is small, and that the com-
ponents with pulsations w-+#nw; with #>1 are negligi-
ble. In general, this approximation seems to be reason-
able physically. This means that the spectrum decreases
rapidly around pulsation w.

This may not be the case for a Bragg interference of
order greater than unity, described by the relation

i) =)
w -+ % w/’
In fact, in an actual physical problem, it is necessary to
take into consideration harmonics of high order.

b) It has been implicitly assumed that extraction of
energy did not modify the perturbation. This can be

true only for weak signals, or when it is possible to feed
the medium at all points with energy of correct phase

January

and amplitude. Otherwise, it would be necessary to con-
sider the fact that the electromagnetic wave at w would
have some effect on the medium itself by weakening or
strengthening the perturbation. (This is similar to the
action of the perturbation on the electromagnetic wave
by increasing or decreasing it.)

¢) The cases examined have this in common—they
all relate to Bragg interference of the first order. There
is a clear feeling that it is in the case of Bragyg interfer-
ence that the interaction of the medium on the wave is
strong, for it is then that the phase conditions which
make the action cumulative are best obtained. A par-
ticularly striking example is that of cases 2) and 4)
(Section I11) for small values of w;/w.

This has led to the exploration in plane k;/ky, w1/w of
two straight lines [cases 2) and 4)] and of a region
around the first bisector [cases 1) and 3) and sur-
roundings].

In order to exhaust the problem it would, in fact, be
necessary to explore the whole plane. But then the
question would be raised of the validity of the solutions
obtained, which, it should be remembered, are only
approximations,

B. Parametric Amplification

As was stated in Section I it is possible to ap-
proach the problems of parametric amplification by
separating the difficulties. A pumping energy modifies
the characteristics of the medium. Knowing the modifi-
cation of the medium, an action on the signal is deduced.
It is then unnecessary to introduce the pumping field
in the equations. This is obvious in the case of an energy
of a different character—mechanical for instance.
Consider the case of an electromagnetic pumping
energy: that is, the same kind as the signal.

Let Ei, Hi, E, H represent the pumping field of fre-
quency wi/2% and signal field of frequency w/2w. By
hypothesis, the Maxwell equations (2), (3), (4) and (5)
and the boundary conditions are satisfied for the
pumping field Ei, H; alone. In particular, (4) is written

— éeEl
VXH .
ot

(57)

1 =

In (57) € is a function of x, ¥, z and of the field E;, H;.
In particular it can take the form described by (1).
It is now necessary to satisfy the Maxwell equations
and the boundary conditions for the sum of the pumping
and signal fields. But the Maxwell equations, as well as
the boundary conditions, are linear. Since the pumping
field already satisfies them, it is necessary and sufficient
that the signal field satisfy them, provided that ¢ is for-
mulated so that it can be determined by (57). This as-
sumes that the addition of the signal field does not modi-
fy the value of e. This condition, generally realized, can
be described as an “approximation for small signals.”



1960

This being said, up to the moment and as far as we
know, parametric amplification experiments have been
performed only with lumped constants or with cavities.
In the case of lumped constants, the circuits have
always been tuned, which, as in the cavities case, is the
same as repeating in time the action of the medium on
the electromagnetic wave. More precisely, it is possible
to pass easily from the case of a traveling wave to that
of a cavity. Thus, as is well-known, in a cavity the field
can generally be given the form of two traveling waves
circulating in opposite directions so that the matching
conditions may be obtained at the extremities. A trans-
position of the solutions found for traveling waves can
therefore be made for cavity problems.

C.

Various analogies can be drawn from known cases of
localized parametric amplification.

Up-converter: An input signal of frequency w and
“pumping” power of frequency w; produce a signal of
frequency w-w;. The latter is amplified in power in the
ratio 14+wi/w. This is what was found in Section III,
B; in particular, see (22).

Down-converter: An input signal of frequency w and
“pumping” power of frequency w; produce a signal of
frequency w—uw; (see Section 111, D).

If wlL>w, the resultant signal is diminished. Power
loss is given by 1—w;/w (see Section III, E).

If wi>w, it is possible to obtain some amplification
(see Section III, F). However, there is a tendency to
instability; under certain conditions the system can
break into oscillations, as in (41). As was already seen,
this case approaches the conventional self-excited oscil-
lator.

D.

The solution examined in Section IV should be com-
pared to the operation of traveling wave tubes, espe-
cially in the case where w1 >w. (See the preceding para-
graph.)

Thus, drawing an analogy between dielectric and
electric current, we find that, as in the TWT case, it is
in the neighborhood of equality of phase velocity of the
cold wave and of the velocity of the electrons, and that
it is possible to obtain exponential amplification. The
amplified wave, sometimes designated “forced” wave, in
TWT tubes always has a phase velocity which is less
than the phase velocity of the “cold” wave [see (53)].

E.

1t has been found (Section III, F) that under certain
conditions described by (41) the perturbed medium may
behave like an oscillator delivering energy at frequencies
wand w; —w. It is interesting to point out that thereis a
strong analogy between the conditions in (41) and
those which give the oscillating state for the UHF tube
called “carcinotron” or backward wave oscillator.

Simon: Action of a Progressive Disturbance on a Guided Electromagnetic Wave 29

V1. CoNncLusIiON

This investigation has made it possible to obtain the
modes of action of a perturbation of the medium on a
guided electromagnetic wave. This action is intense,
especially when the so-called Bragg phase velocity con-
ditions are obtained. It is then possible to have energy
transfer into the electromagnetic wave.

In such a problem, the “boundary conditions” are as
important as the solution of the propagation equation.
In particular, the “accord conditions” between a per-
turbed and an unperturbed medium have set aside a
certain number of solutions which could have been taken
as actual amplifications. Such a state of affairs is found
in certain plasma waves which cannot be “extracted”
from the medium.

In the “approximation of small signals,” it has been
seen that the problem discussed is related to the prob-
lem of parametric amplification. Analogies have been
found with cases of localized parametric amplification
and with the conditions of traveling wave tubes and
carcinotrons.

We do not claim to have completely dealt with para-
metric amplification for traveling waves, but it seems
that this way of treating the problem may bring out the
greatest number of related physical concepts. It appears
that the complete solution of practical cases should be
undertaken in accordance with the proposed scheme
which makes it possible to separate the difficulties—
action of the “pumping energy” on the medium, and
action of the perturbed medium on the signal.

)
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